

Soit φ la transformation plane d'expression analytique : $\begin{cases} x' = y - 1 \\ y' = x + 2 \end{cases}$

- 5°) Démontrer que φ est une symétrie glissée.
- 6°) Démontrer que $r = g \circ \varphi$ a pour écriture complexe : z' = (1 i)z.
- 7°) Soit (Γ) l'ensemble des points M du plan de coordonnées (x,y) vérifiant:

$$5x^2 + 5y^2 + 6xy - 4x + 4y = 0.$$

- a) Déterminer une équation cartésienne de $(\Gamma') = r(\Gamma)$.
- b) Démontrer que (Γ') est une ellipse dont on précisera le centre et les sommets.
- c) En déduire que (Γ) est une ellipse dont on précisera le centre et les sommets.

FIN

Benin, Juin 2005

N.B.: Le candidat doit traiter les deux exercices et le problème

DUREE: 4 heures

EXERCICE 1

- 1°) p1, p2, p3 sont des entiers naturels premiers et constituent dans cet ordre trois termes consécutifs d'une suite arithmétique de raison 2.
- a) Démontrer que un et un seul des nombres p_1 , p_2 , p_3 est un multiple de 3.
 - b) Déterminer p_1, p_2, p_3 .
 - 2°) x, y et z sont des entiers relatifs tels que : 3x + 5y + 7z = 0.
 - a) Démontrer que l'on a : $y \equiv z$ [3].
 - b) En déduire que x, y et z s'écrivent :

$$\begin{cases} x = -5p - 7q - 4r \\ y = 3p + r \\ z = 3q + r \end{cases}, \quad r \in \{0, 1, 2\} \text{ et } (p, q) \in \mathbb{Z}^2.$$

3°) ABCDEFGH est un pavé droit de centre O tel que AB = 10, AD = 5 et AE = 5. L'espace est rapporté à un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ tel que $\overrightarrow{i} = \frac{1}{10}\overrightarrow{AB}, \overrightarrow{j} = \frac{1}{5}\overrightarrow{AD}, \overrightarrow{k} = \frac{1}{5}\overrightarrow{AE}$ et (\mathcal{P}) est le plan d'équation 3x + 5y + 7z = 0 dans ce repère.

Déterminer l'ensemble des points à coordonnées entières de (P) qui sont intérieurs au pavé ABCDEFGH.

suite en page 2

EXERCICE 2

Soient f et g deux fonctions numériques de la variable réelle x, définies par :

$$\begin{cases} f(x) = e^{x\ln\left(\left|1 - \frac{1}{x}\right|\right)}, & \text{si } x \neq 1 \\ f(1) = 0 & ; \quad g(x) = \frac{1}{x - 1} + \ln\left(\left|\frac{x - 1}{x}\right|\right). \end{cases}$$

On désigne par (C) la courbe représentative de f dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$.

- 1°) Etudier les variations de g.
- 2° -a) Démontrer que l'équation g(x)=0 admet une solution unique α telle que $0<\alpha<\frac{1}{2}$.
 - b) En déduire le signe de g(x) suivant les valeurs de x.
 - 3° -a) Etudier la continuité de f en 1.
 - b) Démontrer que : $\lim_{\substack{x \to 1 \ x \to 1}} \frac{f(x)}{x-1} = -1$ et $\lim_{\substack{x \to 1 \ x \to 1}} \frac{f(x)}{x-1} = 1$.
- c) Etudier la dérivabilité de f à gauche et à droite en 1, puis donner une interprétation géométrique de chacun des résultats.
 - 4° -a) Etudier les variations de f.
 - b) Prouver que $f(\alpha) = e^{-\frac{\alpha}{\alpha-1}}$ et donner un encadrement de $f(\alpha)$.
- $5^{\rm o}$) Construire la courbe (\mathcal{C}) et les demi-tangentes éventuelles à la courbe (\mathcal{C}) en son point d'abscisse 1.

PROBLEME

Le plan est muni d'un repère orthonormé $(O; \overrightarrow{u}, \overrightarrow{v})$.

PARTIE A

On considère dans l'ensemble $\mathbb C$ des nombres complexes, le polynôme :

$$P(z) = z^3 - \left[2 + (3 + \sqrt{2})i\right]z^2 + \left[-5 - 3\sqrt{2} + (2\sqrt{2} + 1)i\right]z + \sqrt{2} + 5i\sqrt{2}.$$

suite en page 3

- 1°-a) Démontrer que P(z) peut s'écrire sous la forme :
- P(z)=(z+1-i)Q(z), où Q(z) est un polynôme de degré 2 que l'on précisera.
 - b) Ecrire, sous forme algébrique, le nombre complexe :

$$d = \left[3 + (2 - \sqrt{2})i\right]^2.$$

- c) Résoudre dans \mathbb{C} l'équation P(z) = 0.
- 2°) On considère la transformation f du plan dans lui-même qui, à tout point M d'affixe z, associe le point M'=f(M) d'affixe z' définie par : $z'=\frac{1+i}{\sqrt{2}}\overline{z}-1+i(1+\sqrt{2}).$

On désigne par A, B et C les points d'affixes respectives -1+i, 3+2i et $i\sqrt{2}$.

- a) Calculer les affixes respectives des points A' et C', images respectives de A et C par f.
 - b) En déduire la nature et les éléments caractéristiques de f.

PARTIE B

On désigne par h l'homothétie de centre A et de rapport $\sqrt{2}$; on pose $q=f\circ h.$

- 3° -a) Déterminer l'écriture complexe de h.
 - b) Démontrer que g a pour écriture complexe : $z' = (1+i)\overline{z} 1 + 3i$.
- 4° -a) Soit M un point du plan d'affixe z=x+iy, avec x et y entiers. On note N=g(M).

Démontrer que \overrightarrow{AB} et \overrightarrow{BN} sont orthogonaux si, et seulement si :

$$5x + 3y = 15.$$

- b) Résoudre dans \mathbb{Z}^2 l'équation : 5x + 3y = 15.
- c) En déduire les points M du plan dont les coordonnées sont des entiers appartenant à l'intervalle [-5;5] et tels que \overrightarrow{AB} et \overrightarrow{BN} soient orthogonaux.

suite en page 4