REPUBLIQUE GABONAISE OFFICE NATIONAL DU BACCALAUREAT

2003-1. MATHEMATIQUES

SERIE:

Al 3 heures

Coefficient: 4

EXERCICE 1 (5 points)

1. On considère le polynôme $P(x) = ax^3 + bx^2 + cx + d$ où a, b, c et d sont des nombres réels.

a) Calculer la dérivée première et la dérivée seconde notées P' et P" de la fonction polynôme $P: x \mapsto P(x)$.

b) Déterminer a, b, c et d sachant que :

P(0) = 6; P(2) = -4; P'(1) = -6 et P''(-1) = -10; en déduire l'écriture du polynôme P(x).

- 2. Soit le polynôme $Q(x) = x^3 2x^2 5x + 6$.
 - a) Calculer Q(-2); en déduire la factorisation de Q(x) sous la forme d'un produit de 3 facteurs du premier degré.
 - b) Résoudre dans IR l'équation Q(x) = 0.
 - c) En déduire la résolution dans IR des équations suivantes :

(i)
$$(\ln x)^3 - 2(\ln x)^2 - 5(\ln x) + 6 = 0.$$

(ii)
$$5e^x - 6 = e^{3x} - 2e^{2x}$$
.

EXERCICE 2 (5 points)

Une urne contient 5 boules numérotées de 1 à 5 ; on suppose que le tirage de chacune des 5 boules est équiprobable.

Une personne tire une boule au hasard, note son numéro et la remet dans l'urne ; puis elle tire une seconde boule et note son numéro.

On appelle X la variable aléatoire définie de la manière suivante :

- si les deux numéros sont identiques, X prend leur valeur commune ;
- si les deux numéros sont différents, X prend la valeur du plus petit des deux numéros.
- 1. a) Préciser l'univers associé à cette expérience aléatoire.
 - b) Quelles sont les différentes valeurs prises par X?
 - c) Définir la loi de probabilité de X. (On donnera les résultats sous forme de fractions irréductibles).
 - d) Calculer l'espérance mathématique de X.
 - e) Calculer la probabilité de l'événement : « $X \ge 4$ ».
- 2. On répète 6 fois de suite ce jeu dans les mêmes conditions. (Les résultats seront donnés avec 3 chiffres après la virgule).
 - a) Calculer la probabilité pour que l'événement : « $X \ge 4$ » soit réalisé exactement 3 fois.
 - b) Calculer la probabilité pour que l'événement: « $X \ge 4$ » soit réalisé au moins une fois.

PROBLEME (10 points)

Partie A: Etude d'une fonction homographique

Soit g la fonction numérique de la variable réelle x définie sur $]-\infty$; $\frac{3}{2}$ [par $g(x) = \frac{3+2x}{3-2x}$.

On désigne par (Γ) sa représentation graphique dans un repère.

- 1. a) Calculer les limites de q aux bornes de son ensemble de définition.
 - b) Donner une interprétation graphique des résultats.
- 2. a) Calculer g'(x) où g' est la fonction dérivée de g.
 - b) Etudier le sens de variation de g et dresser le tableau de variation de g.
 - c) Calculer $g(-\frac{3}{2})$ et donner le signe de g sur l'intervalle $]-\infty$, $\frac{3}{2}[-\infty]$

Partie B: Etude d'une fonction composée avec in

On considère la fonction numérique f de la variable réelle x définie par

 $f(x) = \ln \left(\frac{3+2x}{3-2x} \right)$, \mathscr{C} sa courbe représentative dans un repère orthonormé (O, i, j),

unité graphique: 2 cm. (On rappelle que f(x) = ln [g(x)]).

- 1. a) Montrer que f'est définie sur]- $\frac{3}{2}$; $\frac{3}{2}$ [.
 - b) Déterminer les limites de f en $-\frac{3}{2}$ et en $\frac{3}{2}$.
 - c) En déduire les équations des asymptotes à $\mathscr C$.
- 2. a) Montrer que f est impaire:
 - b) Quelle interprétation géométrique peut-on faire de ce résultat ?
- 3. a) Calculer la dérivée f '(x) de f(x).
 - b) Etudier les variations de f puis dresser son tableau de variation complet.
 - c) Déterminer l'équation de la tangente (T) à 6 en son point d'abscisse 0.
- **4.** Construire \mathscr{C} , (T) et ses asymptotes dans le repère (O, \vec{i}, \vec{j}) .

Partie C: Calcul d'aire

On considère la partie (E) du plan délimitée par la courbe $\mathscr C$ de f, l'axe des abscisses (O,i), l'axe des ordonnées (O,j) et la droite (Δ) d'équation x=1.

- 1. a) Par une intégration par parties, montrer que l'aire \mathscr{A} en unités d'aire de **(E)** est égale à $\frac{5\ln 5 6\ln 3}{2}$.
 - b) Donner en cm^2 la valeur exacte de $\mathscr A$ puis un arrondi d'ordre 2 de cette valeur.
- 2. a) Soit l'intégrale $I = \int_{-I}^{I} f(x) dx$. Déduire de la parité de f , la valeur de I.
 - b) Quelle est l'aire \mathscr{A}' , en unités d'aire de la partie du plan délimitée par l'axe des abscisses, la courbe \mathscr{C} et les droites (Δ') et (Δ) d'équations respectives x = -1 et x = 1?

Corrigé –Bac A1- Session 2003- sujet1

Exercice 1 (5 points)

1°) a)
$$x \in \mathbb{R}$$
, P'(x) = $2ax^2 + 2bx + c$

$$x \in \mathbb{R}$$
: P''(x) = 6ax + 2b

b)
$$\begin{cases} P(0) = 6 \\ P(2) = -4 \\ P'(1) = -6 \end{cases} \Leftrightarrow \begin{cases} d = 6 \\ 8a + 4b + 2c + d = -4 \\ 3a + 2b + c = -6 \\ -6a + 2b = -10 \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = -2 \\ c = -5 \\ d = 6 \end{cases}$$

1 pt pour la résolution

$$2^{\circ}$$
) a) $Q(-2) = 0$ 0.25 pt

donc Q(x) est factorisable par
$$(x + 2)$$
: Q(x) = $(x + 2)(x^2 - 4x + 3)...$

 $P(x) = x^3 - 2x^2 - 5x + 6.$ 0,25 pt

et
$$Q(x) = (x + 2) (x - 1) (x - 3)$$

$$Q(x) = 0 \Leftrightarrow (x+2)(x-1)(x-3) = 0 \Leftrightarrow x = -2 \text{ ou } x = 1 \text{ ou } x = 3$$

b) (i)
$$x > 0$$
; $(\ln x)^3 - (\ln x)^2 - 5(\ln x) + 6 = 0 \Leftrightarrow Q(\ln x) = 0$

$$\Leftrightarrow$$
 x> 0. ln x= -2 ou ln x = 1 ou ln x = 3

$$\Leftrightarrow$$
 $x=e^{-2}$ ou $x=e$ ou $x=e^{3}$

(ii)
$$5 e^x - 6 = e^{3x} - 2 e^{2x} \Leftrightarrow Q(e^x) = 0 \Leftrightarrow x = 0 \text{ ou } x = \ln 3$$
 0,75 pt

Exercice 2 (5 points)

- 1°) a) L'univers Ω est l'ensemble des couples (x ;y) de {1 ;2 ;3 ;4 ;5 ;6}²
- 0,50 pt

- b) Les valeurs de x sont : 1 ; 2 ; 3 ; 4 ; 5

c) Loi de X

k	1	2	3	4	5	
p(X=k)	9 25	7 25	5 25	3	1 25	
	23	23	23	23	23	

1,25 pt

Le candidat doit expliquer comment il trouve la loi sinon 0.5 pt de pénalité.

Vérification : $\sum_{k=3}^{k=3} p(X=k) = 1$ 0,25 pt

d) Calcul de l'espérance : E(X) = 2,20 0,25 pt

e)
$$p(X \ge k) = p(X = 4) + p(X = 5) = \frac{4}{25}$$
 0,50 pt

- 2°) a) Soit p la probabilité cherchée : $p = C_6^3 (\frac{4}{25})^3 (\frac{21}{25})^3 = 0.048....000$
 - b) la probabilité p' cherchée est : $p' = 1 C_6^0 (\frac{4}{25})^0 (\frac{21}{25})^6 = 0,648$ 1 pt

si le candidat utilise une autre méthode, ne pas le pénaliser

Problème (10 points)

<u>Partie A(</u> 4 points) Pour tout $x \in]-\infty$; $\frac{3}{2}[$; $g(x)=\frac{3+2x}{3-2x}$

a) $\lim_{x \to -\infty} g(x) = -1 \Rightarrow \text{la droite } (\Delta) \text{ d'équation } y = -1 \text{ est une asymptote à } (\Gamma) \text{ en } -\infty.$

 $2 \times 0.25 pt$

 $\lim_{x \to \frac{3}{2}} g(x) = +\infty$ \Rightarrow la droite (D) d'équation $x = \frac{3}{2}$ est une asymptote à (Γ) .

 $2 \times 0.25 pt$

b) Pour tout $x \in]-\infty$; $\frac{3}{2}[; g'(x) = \frac{12}{(3-2x)^2},$

donc pour tout $x \in]-\infty$; $\frac{3}{2}[, g'(x) > 0]$

g est strictement croissante sur]- ∞ ; $\frac{3}{2}$ [

c) Tableau de variation

x	-∞ 3/2
signe de f'	+
f	-1 -1

0,25 pt

d) g($-\frac{3}{2}$) = 0. En plaçant $-\frac{3}{2}$ et son image par dans le T.V. on trouve :

_		_	
0	2	5	-4
V.		.)	DI

x	$-\infty$		-3/2		+3/2
f(x)		-	0	+	

0,5 pt

1 pt pour la représentation complète détail: Asympt.2x0,25pt

Axes: 0,25pt

Allure: 0,25pt

Partie B (3 points)

$$f(x) = \ln\left(\frac{3+2x}{3-2x}\right)$$

a) Pour tout $x \in]-\frac{3}{2}$; $\frac{3}{2}[$, $g(x) = \frac{3+2x}{3-2x} > 0$, donc f est définie sur $]-\frac{3}{2}$; $\frac{3}{2}[$.

0,5 pt

b) Pour tout $x \in]-\frac{3}{2}; \frac{3}{2}[$, on $a - x \in]-\frac{3}{2}; \frac{3}{2}[$, et f(-x) = -f(x), donc f est impaire

0,5 pt

Ne pas pénaliser le candidat s'il ne précise pas que le domaine est symétrique par rapport à l'origine, par contre il doit détailler l'égalité f(-x) = -f(x).

F est impaire, alors le point O est un centre de symétrie pour (C).

0,25 pt

c) Tableau de variation complet de f: ln(g(x)) a même variation que g

Х	-3/2 +3/2	2
signe de f'	+	
f		D

0,5 pt pour le

T.V

$$\lim_{x \to -\frac{3}{2}} f(x) = -\infty \quad \lim_{x \to \frac{3}{2}} f(x) = +\infty$$

donc les droites (D) et (d') d'équations respectives

$$x = \frac{3}{2}$$
 et $x = -\frac{3}{2}$ sont asymptotes à (C).

2 x0,25 pt

d) Construction de (C) et ses asymptotes dans le repère $(O', \overrightarrow{i}, \overrightarrow{j})$

la représentation complète

Lesnon respect des unités, du tracé des asymptotes seront

Détails :

Pénalités

Asympt.: 0,25 pt

Axes: 0,25 pt

Allure: 0,5 pt

Les tangentes remarquables n'ont pas été demandées.

Partie C (3 points)

sanctionnés.

a) L'aire A exprimée en u. a. est : $A = \int_0^1 f(x) dx = \int_0^1 \ln(\frac{3+2x}{3-2x}) dx$ u.a. 0,50 pt

On pose: $|u(x)| = \ln(\frac{3+2x}{3-2x}) \quad alors \quad u'(x) = \frac{12}{9-4x^2}$ $v'(x) = 1 \quad et \quad v(x) = x$

$$v'(x) = 1$$
 et $v(x) = x$
Alors: $A = \left[x \ln(\frac{3+2x}{3-2x}) \right]^{1} - \int_{0}^{1} \frac{12x}{9-4x^{2}} dx$ $u.a.$

1 pt

 $A = \ln 5 + \frac{3}{2} \int_0^1 \frac{-8x}{9 - 4x^2} dx = \ln 5 + \frac{3}{2} \left[\ln(9 - 4x^2) \right]_0^1 = \ln 5 + \frac{3}{2} \ln 5 - \frac{6}{2} \ln 3 = \frac{5 \ln 5 - 6 \ln 3}{2} \quad u.a.$

Pour les détails

0,5 pt

b)
$$1u.a. = 4 \text{ cm}^2 \text{ alors A} = (10\ln 5 - 12\ln 3) \text{ cm}^2 = 2.91 \text{ cm}^2.$$
 0.25 pt

c)
$$\int_{-1}^{1} f(x)dx = 0$$
 car f est impaire.

d) A' =
$$2A = (5\ln 5 - 6\ln 3)$$
 u. a. (on accepte la valeur en cm²) 0.25 pt